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Abstract
With a view towards future applications in nuclear physics, the fermion
realization of the compact symplectic sp(4) algebra and its q-deformed versions
are investigated. Three important reduction chains of the sp(4) algebra are
explored in both the classical and deformed cases. The deformed realizations
are based on distinct deformations of the fermion creation and annihilation
operators. For the primary reduction, the su(2) substructure can be interpreted
as either the spin, isospin or angular momentum algebra, whereas for the other
two reductions su(2) can be associated with pairing between fermions of the
same type or pairing between two distinct fermion types. Each reduction
provides for a complete classification of the basis states. The deformed
induced u(2) representations are reducible in the action spaces of sp(4) and
are decomposed into irreducible representations.

PACS numbers: 21.60.-n, 02.20.-a

1. Introduction

Symplectic algebras can be used to describe many-particle systems. The compact, sp(2n), and
noncompact versions, sp(2n,R), of the algebra enter naturally when the number of particles
or couplings between the particles changes in a pairwise fashion from one configuration
to the next. In this paper we consider the simplest nontrivial case: the compact sp(4)
symplectic algebra, which is isomorphic to the Lie algebra of the five-dimensional rotation
groupSO(5) [1–3]. Applications of sp(4) are related to different interpretations of the quantum
numbers of the fermions used to construct the generators of the Sp(4) group.

Interest in symplectic groups is related to applications to nuclear structure [4–6]. In
particular, Sp(4) has been used to explore pairing correlations in nuclei [1,7,8]. The reduction
chains to different realizations of the u(2) subalgebra of sp(4) yield a complete classification
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scheme for the basis states. It is rather easy to generalize this work to higher-rank algebras and
therefore the algebraic techniques are illustrated by sp(4) (e.g. [9]). A further interest in the
symplectic algebras is related to their use in mapping methods from the fermion space to the
space spanned by collective bosons and ideal fermions [10]. In these applications the primary
purpose is to simplify the Hamiltonian of the initial problem.

In the last decade much effort, from a purely mathematical [11–14] as well as from the
physical point of view [15], has been concentrated on various deformations of the classical
Lie algebras. The general feature of these deformations is that at the limit of the deformation
parameter q → 1 the q-algebra reverts to the classical Lie algebra. More than one deformation
can be realized for one and the same ‘classical’ algebra, which can be chosen in a convenient
way in different physical applications. There are many similarities between the classical Lie
algebras and their deformations, especially with respect to their representation. Deformed
algebras introduce a new degree of freedom that can give a better explanation of nonlinear
effects. Their study can lead to deeper understanding of the physical significance of the
deformation.

In [16] a boson realization of the noncompact sp(4, R) and two distinct deformations of
it, as well as compact and noncompact subalgebras of each, were investigated and reductions
of their action spaces obtained. As the fermion case has more direct application in nuclear
theory than the boson construction, in this paper our aim is to investigate in detail the fermion
realization of the sp(4) algebra and its deformations. Using the methodology from [16], we
begin with the well known realization of this algebra in terms of ‘classical’ fermion creation
and annihilation operators and consider all the subalgebras which correspond to different ways
of specifying labels of the basis states via the eigenvalues of the operators generating these
subalgebras (section 2). Furthermore, we obtain the deformation of this sp(4) algebra and
its subalgebras by introducing a transformation function that deforms the classical fermions
into q-deformed fermions. We also introduce another deformation in terms of the standard
q-fermions and by following the same procedure we investigate the enveloping algebra of
sp(4) and the action of its generators on the deformed basis (section 3).

2. Fermion realization of the sp(4) algebra

To establish the notation, recall some features of the fermion realization of the sp(4)
algebra [3,4,9], which is isomorphic to so(5) [2], as normally used in the shell-model studies.
The operator c†

m,σ creates (cm,σ annihilates) a particle of type σ = ±1, in a state of total angular
momentum j = 2k+1

2 , k = 0, 1, 2, . . . , with projection m along the z axis (−j � m � j ).
These operators satisfy Fermi anticommutation relations

{cm′,σ ′ , c†
m,σ } = δm′,mδσ ′,σ {c†

m′,σ ′ , c
†
m,σ } = {cm′,σ ′ , cm,σ } = 0 (1)

and Hermitian conjugation is given by (c†
m,σ )

∗ = cm,σ .
For a given σ , the dimension of the fermion space is 2�j = 2j+1. The fermion realization

of sp(4) is given in a standard way by means of the following operators [1, 2, 9]:

Aσ,σ ′ = ξσ,σ ′

j∑
m=−j

(−1)j−mc†
m,σ c

†
−m,σ ′=Aσ ′,σ = (Bσ,σ ′)† (2)

Bσ,σ ′ = ξσ,σ ′

j∑
m=−j

(−1)j−mc−m,σ cm,σ ′ = Bσ ′,σ = (Aσ,σ ′)†. (3)

These operators create (annihilate) a pair of fermions coupled to total angular momentum
J = 0 [2] and thus constitute boson-like objects according to the spin-statistics theorem [17]
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when the operators

Dσ,σ ′ = η

j∑
m=−j

c†
m,σ cm,σ ′ (4)

preserve the number of fermions. Here the normalization constants are

ξσ,σ ′ = η√
(1 + δσ,σ ′)

η = 1√
2�j

. (5)

The number of the operators Aσ,σ ′ , Bσ,σ ′ and Dσ,σ ′ is ten (Aσ,σ ′ = Aσ ′,σ , Bσ,σ ′ = Bσ ′,σ ).
Their commutation relations, obtained by means of (1), show that these operators generate a
fermion realization of the sp(4) algebra [1]. An additional index m 	= 0 of the creation and
annihilation fermion operators is introduced in order to construct non-zero operators Aσ,σ and
Bσ,σ , but the index σ = ±1 defines the algebraic properties of the generators Aσ,σ ′ , Bσ,σ ′ and
Dσ,σ ′ .

Different interpretations of σ correspond to different physical meanings for the operators
generating the ten-parametric Sp(4) group and therefore different physical models. These can
be used to describe various aspects of the nuclear interaction (different Hamiltonians) [9] like
charge-independent pairing, two-level pairing (Lipkin model) or two-dimensional rotations
and vibrations. The sp(4) algebra is considered to be the dynamical symmetry algebra in
these applications. Each of the limits is described by a reduction chain of the algebra, which
serves to label the basis states by eigenvalues of the invariant operators of the subalgebras and
gives the corresponding limiting forms of the model Hamiltonian.

2.1. Subalgebras of sp(4)

The investigation of the subalgebras of sp(4) contained in its reduction chains is given below.

(1) By using the particle number preserving Weyl generators Di,j (4), a subalgebra u(2) of
sp(4) is realized by the operators

τ1 ≡ D+1,−1 τ0 = N1 −N−1

2
τ−1 ≡ D−1,+1 N = N+1 +N−1

(6)

where N±1 ≡ 1
η
D±1,±1 are the operators of the total number of fermions of each kind,

Nσ=
j∑

m=−j
c†
m,σ cm,σ σ = ±1. (7)

The action of these operators on the fermion creation and annihilation operators is given
by

Nσc
†
m,σ ′ = c

†
m,σ ′(Nσ + δσ,σ ′) Nσ cm,σ ′ = cm,σ ′(Nσ − δσ,σ ′)

σ, σ ′ = ±1
(8)

and the anticommutation relations (1) yield the equality

j∑
m=−j

cm,σ c
†
m,σ = 2�j −Nσ σ = ±1. (9)

The operators (6) satisfy the u(2) commutation relations

[τ+, τ−] = 2
τ0

2�j

[τ0, τ±] = ±τ± [N, τ±] = 0 [N, τ0] = 0 (10)
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where τ0, τ± close on an algebra suτ (2) that is isomorphic to so(3). The operator N
generates U(1) and plays the role of the first-order invariant of Uτ (2) = SUτ (2)⊗U(1).
The second-order Casimir operator of SUτ (2) is given by

τ 2 = 2�j

2
(τ+τ− + τ−τ+) + τ0τ0 (11)

and the second-order invariant of Uτ (2) [9] is simply

C2 = N(N + 1)− τ 2. (12)

The algebra suτ (2) � so(3) plays a very important role in all kinds of different physical
applications since it is of the standard spin type, which can be interpreted as spin, isospin
or angular momentum in the various models.

(2) Another unitary realization of u(2), denoted by u0(2), is generated by τ0 (6) and the
operators

A0
+1 ≡ A1,−1 A0

−1 ≡ B1,−1 A0
0 ≡ N

2
−�j (13)

with the following commutation relations:

[A0
+1, A

0
−1] = 2

A0
0

2�j

[A0
0, A

0
±1] = ±A0

±1

[τ0, A
0
±1] = 0, [τ0, A

0
0] = 0.

(14)

For this realization the operator τ0 acts as a first-order invariant of u0(2), defining the
reduction u0(2) = su0(2)⊕ u0(1). The second-order Casimir invariant of this subgroup
is given as

C2(SU
0(2)) = 2�j

2
(A0

+1A
0
−1 + A0

−1A
0
+1) + A0

0A
0
0. (15)

The generators of this SU 0(2) group are operators pairing particles of two different kinds.
(3) Next, we consider two mutually complementary su(2) subalgebras of the algebra sp(4),

denoted by su+(2) and su−(2). These algebras are generated by the operators

A±
+1 ≡ A±1,±1 B±

−1 ≡ B±1,±1 D±
0 ≡ N±1

2
− �j

2
(16)

with the following commutation relations:

[A±
+1, B

±
−1] = 4

D±
0

2�j

[D±
0 , A

±
+1] = A±

+1 [D±
0 , B

±
−1] = −B±

−1. (17)

It is simple to see that each of the generators of SU+(2) commutes with all of the SU−(2)
generators. The second-order Casimir operators of the SU±(2) are

C2(SU
±(2)) = �j

2
(A±

+1B
±
−1 + B±

−1A
±
+1) +D±

0 D
±
0 . (18)

In this case the addition of the operatorsN∓1, considered to be generators of the subgroups
U∓(1), extends su±(2) to u±(2) = su±(2) ⊕u∓(1). N∓1 act as first-order Casimir
operators of U±(2). The operators closing the two mutually complementary subalgebras
describe pairs of particles of the same kind.
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(4) The sum of the generators of the groups SU+(2) and SU−(2) gives rise to another unitary
realization of the su(2) subalgebra of sp(4) denoted by s̃u(2),

Ã+1 ≡ A+
+1 + A−

+1 B̃−1 ≡ B+
−1 + B−

−1 D̃0 ≡ N1

2
+
N−1

2
−�j (19)

with the commutation relations

[Ã+1, B̃−1] = 4
D̃0

2�j

[D̃0, Ã+1] = Ã+1 [D̃0, B̃−1] = −B̃−1 (20)

and the second-order Casimir invariant

C2(S̃U(2)) = �j

2
(Ã+1B̃−1 + B̃−1Ã+1) + D̃0D̃0. (21)

2.2. Action space of the fermion realization of sp(4)

In general, the classical fermion operators act in a finite space Ej for a particular j -level. The
finite representation is due to the Pauli principle, c†

m,σ c
†
m,σ |0〉 = 0, that allows no more than

2�j identical fermions in a single j -shell. In Ej the vacuum |0〉 is defined by cm,σ |0〉 = 0 and
the scalar product is chosen so that 〈0|0〉 = 1.

The states that span the Ej spaces consist of different numbers of fermion creation operators
acting on the vacuum state. These satisfy the Pauli principle through their anti-commutation
relations (1). They form an orthonormal basis in each space and are the common eigenvectors
of the fermion number operatorsN1,N−1 (Nσ = N∗

σ , σ = ±1) andN = N1+N−1. In this way,
they span two subspaces E±

j labelled by the eigenvalue of the invariant operator P = (−1)N

of Sp(4). Here we are interested in the even space E+
j , containing states of coupled fermions,

in order to apply the theory to phenomena like pairing correlations in nuclei.
If we introduce

A
†
1
2 (σ+σ ′)

≡ Aσ,σ ′ B− 1
2 (σ+σ ′)≡ Bσ,σ ′ σ, σ ′ = ±1 (22)

for operators creating (2) and annihilating (3) a pair of particles, it is easy to check that they are
components of two conjugated vectors {A†

k}k=0,±1 and {B−k}k=0,±1, k = 1
2 (σ + σ ′) = 0,±1

with respect to the subgroup SUτ (2) ((6), (10)):

[τ0, A
†
k] = kA

†
k [τl, A

†
k] = 1√

�j

A
†
l+k l = ±1

[τ0, Bk] = kBk [τl, Bk] = − 1√
�j

Bl+k l = ±1.
(23)

In the models where τ is interpreted as the isospin operator, A†
0,±1{B0,∓1} create (destroy) a

pair of fermions coupled to a total isospin τ = 1.
Thus, a linearly independent set of vectors that span the E+

j space can be expressed in
terms of the ‘boson creation operators’ acting on the vacuum state,

|�j ; n1, n0, n−1) = (A
†
1)
n1(A

†
0)
n0(A

†
−1)

n−1 |0〉. (24)

The basis is obtained by orthonormalization of (24). The operators A†
0,±1 commute among

themselves and therefore form a symmetric representation. The eigenvalue of the second-order
Casimir operator �j labels each representation of Sp(4),

C2(Sp(4)) = {τ+, τ−} + {A0
+1, A

0
−1} + {A+

+1, B
+
−1} + {A−

+1, B
−
−1}

+
1

�j

(
τ0τ0 +

(N − 2�j)
2

4

)
(25)

C2(Sp(4))|�j ; n1, n0, n−1) = (�j + 3)|�j ; n1, n0, n−1). (26)
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Table 1. Basis sets for the Sp(4) representation, �312 = 2.

n i = 2 i = 1 i = 0 i = −1 i = −2

0 |0, 0, 0)

2 |1, 0, 0) |0, 1, 0) |0, 0, 1)

4 |2, 0, 0) |1, 1, 0)
|1, 0, 1)
|0, 2, 0)

|0, 1, 1) |0, 0, 2)

6
|2, 0, 1)
|1, 2, 0)

|1, 1, 1)
|0, 3, 0)

|1, 0, 2)
|0, 2, 1)

8
|2, 0, 2)
|1, 2, 1)
|0, 4, 0)

The group Sp(4) is of rank two and thus there exist two invariant operators that commute with
all the generators of the group [1]. The other invariant operator is of fourth order and it is
linearly dependent on the Casimir operator for this group. Usually representations of Sp(4)
are labelled by the largest eigenvalue of the number operator N and the reduced isospin of
the uncoupled fermions in the corresponding state [2, 18]. In each representation of Sp(4)
in the vector space spanned over (24), the maximum number of particles is 4�j and the
respective state consists of no uncoupled fermions (reduced isospin zero). It follows that only
one quantum number is needed,�j . Within a representation,�j is dropped from the labelling
of the states. Another consequence of the symmetric representation is that the vector space
consists of states of a system with total angular momentum J = 0+.

Each representation labelled by �j is finite, because of the fermion structure of the
operators A†

0,±1: (A†
±1)

�j+1|0〉 = 0 or (A†
±1)

�j (A
†
0)|0〉 = 0. Another consequence of the

fermion realization is that some of the vectors (24) of the finite space E+
j are linearly dependent,

for example (A†
1)
�j (A

†
−1)

�j |0〉 ∼ (A
†
0)

2�j |0〉.
The states (24) are the common eigenvectors of the fermion number operators N1,

N−1 (Nσ = N∗
σ , σ = ±1):

N1|n1, n0, n−1) = (2n1 + n0)|n1, n0, n−1)

N−1|n1, n0, n−1) = (2n−1 + n0)|n1, n0, n−1)
(27)

or of the operators N = N1 + N−1 and τ0 = 1
2 (N1 − N−1), which are both diagonal in the

basis (24)

N |n1, n0, n−1) = n|n1, n0, n−1) n = 2(n1 + n−1 + n0) (28)

τ0|n1, n0, n−1) = i|n1, n0, n−1) i = n1 − n−1. (29)

Their eigenvalues can be used to classify the basis within a representation�j . The basis states
labelled by |n1, n0, n−1) for �3/2 = 2 are shown in table 1, where n enumerates the rows and
i the columns.

The basis vectors are degenerate in the sense that more than one of the common eigenstates
of the operatorsN and τ0 have one and the same eigenvalues {n, i} and thus belong to one and
the same cell of table 1. They can be distinguished as eigenstates of the Casimir operators of
the limiting cases:

(1) The basis states can be labelled by the eigenvalues of the invariant operator of each
subgroup in the reduction Sp(4) ⊃ U(2) ⊃ SUτ (2) ⊗ UN(1). As a first-order invariant
of U(2), the operator N decomposes the spaces E+

j into a direct sum of eigensubspaces,
defined by the condition that n is fixed (28),

n = 0, 2, 4, . . . , 4�j . (30)
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Table 2. Basis sets for the SUτ (2) representation, �312 = 2.

n(τ) i = 2 i = 1 i = 0 i = −1 i = −2

0
τ=0→ |0, 0, 0)

2
τ=1→ |1, 0, 0) |0, 1, 0) |0, 0, 1)

τ=2→ |2, 0, 0)
√

2|1, 1, 0) |0,2,0)√
3/2

+ |1,0,1)√
3/2

√
2|0, 1, 1) |0, 0, 2)

4
τ=0→

|0,2,0)√
15/2

− 2|1,0,1)√
15/2

6
τ=1→

|2, 0, 1) ≡

−2|1, 2, 0)

2|1, 1, 1) ≡
−2
3 |0, 3, 0)

|1, 0, 2) ≡

−2|0, 2, 1)

8
τ=0→

2
3 |0, 4, 0) ≡
−2|1, 2, 1) ≡
|2, 0, 2)

So an irreducible unitary representation (IUR) of U(2) is realized in each row of table 1.
The SUτ (2) subgroup provides the other two quantum numbers as a standard label of the
basis vectors. First, it is the eigenvalue of the Casimir operator of second rank in τ ,

τ 2|n, τ, i〉 = τ(τ + 1)|n, τ, i〉 (31)

where τ = ñ
2 , ñ2 − 2, . . . , 1 (odd) or 0 (even), ñ = min{n, 4�j − n}, and second it is the

eigenvalue of τ0 (29), where i = n1 − n−1 = −τ,−τ + 1, . . . , τ . As an example, the
orthonormalized basis |n, τ, i〉 given in terms of the states |n1, n0, n−1) is shown in table 2
for �3/2 = 2.
In general, the state with the maximum number of particles always has a total isospin zero,
τ = 0, and all the possible states expressed in the basis |n1, n0, n−1) are equivalent within
a normalization factor. The raising (lowering) generators τ±1 acting (2τ + 1) times on the
lowest |n, τ,−τ 〉 (highest |n, τ, τ 〉) weight state give all the basis states of the respective
τ -representation according to the result

τ±1|n, τ, i〉 =
√
(τ ∓ i)(τ ± i + 1)

2�j

|n, τ, i ± 1〉. (32)

(2) The reduction chain Sp(4) ⊃ U 0(2) ⊃SU 0
(2) ⊗ Uτ0(1) introduces another labelling

scheme for the basis states, namely, |i, 2(n1 + n−1)max, n). The quantum numbers that
specify the states are the eigenvalue i of τ0, i = −�j,−�j + 1, . . . , �j , the seniority
quantum number ν = 2(n1 + n−1)max = 2|i|, and the eigenvalue of the operator
A0

0 = −(�j − |i|),−(�j − |i|) + 1, . . . , (�j − |i|) (13). The first invariant of U 0(2)
decomposes the spaces E+

j into a direct sum of eigensubspaces of the operator τ0 at each
of its fixed values (29). These subspaces are represented by the columns of table 1. The
operator A0

0 (13) does not differ essentially from the first invariant operator N of UN(1)
and it further reduces the columns of table 1 to the cells. The seniority quantum number
differs between two states of one and the same i and n, but different coupling schemes,
and it is introduced by the eigenvalues of the second Casimir operator for this subgroup:

C2(SU
0(2))|n1, n0, n−1) = 2�j−2(n1 + n−1)max

2

×
(

2�j − 2(n1 + n−1)max

2
+ 1

)
|n1, n0, n−1). (33)
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This is a scheme for coupling particles of the two different kinds {σ = 1, σ ′ = −1} with
n1 = 0, or n−1 = 0, or both n1 = n−1 = 0. These states are the last ones in each of the
cells in the table 1. The additional quantum number, ν = 2(n1 +n−1)max, is the maximum
number of the remaining pairs coupled as {σ = 1, σ ′ = 1} or {σ = −1, σ ′ = −1}. In that
limit, the Casimir operator can be expressed in terms of the eigenvalue of the first-order
invariant of U 0(2),

C2(SU
0(2))|n1, n0, n−1) = (�j − |i|)(�j − |i| + 1)|n1, n0, n−1). (34)

The raising and lowering generators of the subgroup SU 0(2) act along the columns in the
following way:

A0
+1|n1, n0, n−1) = |n1, n0 + 1, n−1)

A0
−1|n1, n0, n−1) = n0

(
1 − 2(n−1 + n1) + n0 − 1

2�j

)
|n1, n0 − 1, n−1).

(35)

In each column i, A0
+1 starts from the lowest-weight state |n1, n0, 0) or |0, n0, n−1),

n0 = 0, n±1 = 0, 1, . . . , |i| and gives all the basis states within a τ0-representation with
n0 = 1, 2, . . . , 2(�j − |i|). Similarly, A0

−1 gives the basis states of the representation of
the subgroup under consideration, starting with the highest-weight state n0 = 2(�j −|i|),
for each i.
The normalized basis states,

|n1, n0, n−1〉 = 1

N0(n1, n0, n−1)
|n1, n0, n−1) (36)

can be derived from (35). For the three types of state in this reduction, the normalization
coefficients are given by

P2
0 (n1, n0, n−1) = n0!

n0−1∏
k=0

(
1 − 2(n−1 + n1) + k

2�j

)
N0(0, n0, 0) = P0(0, n0, 0)

N0(n1, n0, 0) = P0(n1, n0, 0)N (n1)

N0(0, n0, n−1) = P0(0, n0, n−1)N (n−1)

(37)

where the lowest-weight state (n0 = 0 and n∓1 = 0) in each representation can be
normalized recursively,

N 2(n±1) = n±1!
n±1−1∏
l=0

(
1 − l

�j

)
. (38)

(3) The other reduction is described again by the invariants of the subgroups in the
reduction chain: Sp(4) ⊃ U±(2) ⊃ SU±(2)⊗ U(1)N∓ . Here the labelling is |n∓1, n0 =
n0 max, n±1). First the spaces E+

j are decomposed by means of the first-order invariants
N∓ of the respective subalgebras to the subspaces defined by the conditions (2n∓1 + n0)

= 0, 1, . . . , 2�j and represented by the left (right) diagonals in table 1. The action of the
Casimir operator on the states

C2(SU
±(2))|n1, n0, n−1) = �j−n0 max

2

(
�j−n0 max

2
+ 1

)
|n1, n0, n−1) (39)

provides the su(2) quantum number d = (�− n0 max)/2. The seniority quantum
number n0 max is the maximum number of remaining pairs that can be formed by
coupling particles of different types, here n0 max = {0 or 1}. The basis states are of
the form (A1

†)n1(A−1
†)n−1 |0〉 and (A1

†)n1A0
†(A−1

†)n−1 |0〉 and they are placed first in
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each cell in table 1. Furthermore, the operators D±
0 (16), which are equivalent within

constants to the operators N±, give the respective projection of d: D±
0 |n1, n0, n−1) =

1
2 (2n± + n0 max −�j)|n1, n0, n−1) = d±

0 |n1, n0, n−1). The diagonals are decomposed to
the cells belonging to them and defined by the conditions d±

0 = −d,−d + 1, . . . , d.
The raising and lowering generators of SU±(2) act along the left/right diagonals:

A±
+1|n1, n0, n−1) = |n±1 + 1, n0, n∓1)

B±
−1|n1, n0, n−1) = n±1

(
1 − n±1 + n0 − 1

�j

)
|n±1 − 1, n0, n∓1).

(40)

Starting from the respective lowest- or highest-weight states, they generate all the states
belonging to IURs of the U±(2) subgroups of Sp(4).
The normalized basis states,

|n1, n0, n−1〉 = 1

N±(n1, n0, n−1)
|n1, n0, n−1) (41)

can be derived from (40). For the two types of state n0 = {0 or 1} in this reduction, the
normalization coefficients are given by

N 2
±(n1, n0, n−1) = n1!n−1!

n1−1∏
l=0

(
1 − n0 + l

�j

) n−1−1∏
l=0

(
1 − n0 + l

�j

)
(42)

where the results (42) are consistent with (38) for n0 = 0 and with the lowest-weight state
in each representation (n±1 = 0) normalized recursively:

N 2(n∓1, n0) = n0!
n0−1∏
l=0

(
1 − 2n∓1 + l

2�j

)
n∓1!

n∓1−1∏
l=0

(
1 − l

�j

)
. (43)

3. q-deformations of the fermion realization of sp(4)

Consider q-deformed creation and annihilation operators α†
m,σ and αm,σ , m = −j,−j +

1, . . . , j, σ = ±1, for a particle of type σ in a state of total angular momentum j , with
projection m on the z axis. The Hermitian conjugation relation is defined as (α†

m,σ )
∗ = αm,σ .

3.1. q-deformed transformation of the fermion operators

There is a general class of functions which transform the classical operators into deformed
ones [19, 20]. We use the transformation

αm,σ = θ
Nσ

2 cm,σ α†
m,σ = c†

m,σ θ̄
Nσ

2 (44)

where θ is a complex number with amplitude |θ | = q, q a real number, and Nσ = ∑
m Nm,σ

are the classical number operators. The transformation of (1) leads to the anticommutation
relations for the q-deformed fermion operators,

αm,σα
†
m,σ + qα†

m,σαm,σ = qNσ (45)

and the identities∑
m

α†
m,σαm,σ = Nσq

Nσ−1

∑
m

αm,σα
†
m,σ = (2�j −Nσ )q

Nσ .
(46)
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The raising and lowering generators of the respective deformed Sp(4) group are given as
in the classical case (2)–(4) but in terms of the q-deformed fermion operators:

Fσ,σ ′ = ξσ,σ ′

j∑
m=−j

(−1)j−mα†
m,σα

†
−m,σ ′ = Fσ ′,σ = (Gσ,σ ′)† (47)

Gσ,σ ′ = ξσ,σ ′

j∑
m=−j

(−1)j−mα−m,σαm,σ ′ (48)

and

E1,−1 = η

j∑
m=−j

α
†
m,1α m,−1 E−1,1 = η

j∑
m=−j

α
†
m,−1αm,1 (49)

where the constants are defined in (5). The operatorFσσ (Gσσ ) creates (destroys) a q-deformed
pair of particles of the same kind.

The remaining two Cartan generators Nσ , σ = ±1, used in the deformed commutation
relations (45), are not deformed. The transformation (44) yields the following relations between
the deformed (47)–(49) and the classical operators (2)–(4):

Fσ,σ = Aσ,σ θ̄
Nσ+ 1

2 F1,−1 = A1,−1θ̄
N
2 (50)

Gσ,σ = θNσ+ 1
2Bσ,σ G1,−1 = θ

N
2 B1,−1 (51)

and

E1,−1 = D1,−1θ
N−−1

2 θ̄
N+
2 E−1,1 = D−1,1θ

N+−1
2 θ̄

N−
2 . (52)

Since there is a smooth transformation that depends on the Cartan generators of sp(4) only
and maps the q-deformed operators

F
†
k = F

†
1
2
(σ+σ ′) ≡ Fσ,σ ′ (G−k = G− 1

2
(σ+σ ′) ≡ Gσ,σ ′)

σ, σ ′ = ±1 k = 1
2 (σ + σ ′) = 0,±1

(53)

to the classical vectors A†
0,±1 (B 0,∓1), the q-deformed states are equivalent within a phase to

the classical ones (24). All the relations revert to the classical formulae in the limit q → 1.
The important reduction of spq(4) algebra to compact uq(2) subalgebra can be used again to
obtain classification schemes for the basis states.

(1) The subalgebra uq(2) of spq(4) is closed by the number preserving Weyl generators (49)
and Nσ , σ = ±1, defined as

T+ ≡ E1,−1 T0 ≡ τ0 = N1 −N−1

2
T− ≡ E−1,1 N = N1 +N−1.

(54)

The generators T0, T±1 and N satisfy the commutation relations

[T1, T−1] = T0

�j

qN−1 [T0, T±1] = ±T±1

[N, T±1] = 0 [N, T0] = 0
(55)

and the second invariant of uq(2) is

C2 = N(N + 1)− T 2. (56)

The q-deformed operator T 2 is defined by

T 2 = 2�j

2
(T1T−1 + T−1T1) + T0T0q

N−1

= 2�jT−1T1 + T0(T0 + 1)qN−1 (57)
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and is related to the classical Casimir operator of SUτ (2) (11) by

T 2 = τ 2qN−1. (58)

Thus, the eigenvalues of the Casimir operator are deformed by a phase factor qn−1 and
the eigenvectors are the classical basis states, |n, τ, i〉.

(2) The other subgroup U 0
q (2) is generated by the operators

K0
+1 ≡ F 1,−1 K0

−1 ≡ G1,−1 K0
0 ≡ N

2
−�j (59)

and T0 (54), which is the first-order invariant. The generators of SU 0
q(2) commute in the

following way:

[K0
+1,K

0
−1]−2 = K0

0

�j

qN−2 [K0
0 ,K

0
±1] = ±K0

±1 (60)

where the q-commutator is defined as

[A,B]k = AB − qkBA. (61)

The second-order Casimir invariant of su0
q(2) is given by

C2(SU
0(2)) = 2�j

2
(q2K0

+1K
0
−1 +K0

−1K
0
+1)q

−N + (K0
0 )

2

= 2�jK
0
−1K

0
+1q

−N +K0
0 (K

0
0 + 1). (62)

(3) The two mutually complementary subalgebras su+
q(2) and su−

q (2) of the algebra spq(4)
are given by the q-deformed operators

F±
+1 = F±1,±1 G±

−1 = G±1,±1 (63)

and the nondeformed Cartan operators

E±
0 = N±1

2
− �j

2
. (64)

According to the reduction chain Spq(4) ⊃ SU±
q (2) ⊗ U(1)N∓ , N∓ commute with the

operators F±
+1,G

±
−1, E±

0 , which close the su±
q (2) algebra:

[F±
+1,G

±
−1]−4 = 2E±

0

�j

q2N±1−3 (65)

[N±1, F
±
+1]= 2F±

+1 [N±1 ,G
±
−1] = −2G±

−1. (66)

The corresponding Casimir invariant is

C2(SU
±(2)) = �j

2
(q4F±

+1G
±
−1 +G±

−1F
±
+1)q

−2N±1−1 + (E±
0 )

2

= �jG
±
−1F

±
+1q

−2N±1−1 + E±
0 (E

±
0 + 1). (67)

A similar q-deformation is based on the transformation αm,σ = θ− Nσ
2 cm,σ , which yields

the same relations and identities as above, but with the exchange q → q−1. When θ is real
and positive the deformation parameter is θ ≡ q.
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3.2. q-deformation of the anticommutation relations of the fermion operators

Consider another set of q-deformed Hermitian conjugate operators α†
m,σ and αm,σ , (α†

m,σ )
∗ =

αm,σ ,m = −j,−j + 1, . . . , j, σ = ±1. Let the q-deformed anticommutation relation hold
for every σ and m in the form [14, 21]:

αm,σα
†
m,σ + q±1α†

m,σαm,σ = q±Nm,σ (68)

whereNm,σ = c†
m,σ cm,σ andNσ = ∑j

m=−j Nm,σ are the classical number operators (7). Their
action on the deformed fermion operators is defined as in the classical case (8):

[Nσ , α
†
m,σ ′] = δσ,σ ′α

†
m,σ ′ [Nσ , αm,σ ′] = −δσ,σ ′αm,σ ′ σ, σ ′ = ±1. (69)

In the previous section we showed that if the transformation function (44) is used, the
anticommutation relations of the deformed fermion operators (45) depend not only on a single
term Nm,σ as in (68) but rather on the total sum Nσ . The same dependence, along with the
requirement that the deformation is performed only on the σ index, defines

αm,σα
†
m,σ + q±1α†

m,σαm,σ = q
± Nσ

2�j . (70)

Using both anticommutation relations, it follows that α†
m,σαm,σ = [ Nσ2�j

], where [X] = qX−q−X
q−q−1 ,

which leads to∑
m

α†
m,σαm,σ = 2�j

[
Nσ

2�j

]
(71)

and ∑
m

αm,σα
†
m,σ = 2�j

[
1 − Nσ

2�j

]
. (72)

In the limit q → 1, presuming α±
m,σ → c±

m,σ as well, (71), (72) revert to the classical formulae
for Nσ (7), (9). This justifies the introduction of the weight coefficient ω ≡ 1/(2�j) in (70).
The remaining anticommutation relations for the q-deformed operators can be chosen from
among various possibilities [22, 23]:

{αm,σ , α†
m′,σ }q±1 = q

± Nσ
2�j δm,m′ {αm,σ , α†

m′,σ ′ } = 0 σ 	= σ ′

{α†
m,σ , α

†
m′,σ ′ } = 0 {αm,σ , αm′,σ ′ } = 0

(73)

where the q-anticommutator is given by {A,B}k = AB + qkBA.
The set of generators for this realization of the deformed spq(4) algebra is defined as

in (47)–(49), but in terms of the q-deformed creation and annihilation operators α†
m,σ (αm,σ ),

fulfilling anticommutation relations (73). The Cartan generators N±1 remain the classical
number operators. These ten operators generate the q-deformed Spq(4) group and its subgroup
structure is investigated in analogy with the classical case.

(1) The subgroupUq(2) of Spq(4) is generated by the number preserving Weyl operators (49)
andNσ , σ = ±1, as well as by the equivalent set of the operators T 0,±1 andN (54). These
operators satisfy the commutation relations

[T+, T−] =
[

2
T0

2�j

]
[T0, T±] = ±T±

[N, T±] = 0 [N, T0] = 0.
(74)

The operators T 0,±1 close an algebra suq(2) ∼ soq(3). The number operator N plays the
role of the first-order invariant of Uq(2) = SUq(2) ⊗ U(1). The second-order Casimir
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operator of the subgroup SUq(2) is

T 2 = 2�j

2
(T+T− + T−T+ + [ωT0][T0 + 1]ω + [ωT0][T0 − 1]ω)

= 2�j(T−T+ + [ωT0][T0 + 1]ω). (75)

Here [X]ω = qωX−q−ωX
qω−q−ω and the following identity has been used:

[ωT0][T0 + 1]ω − [ωT0][T0 − 1]ω = [2ωT0]. (76)

The Casimir operator coincides with the classical one in the limit q → 1 (11).
(2) The other u0

q(2) subalgebra is

[K0
+1,K

0
−1] =

[
2
K0

0

2�j

]
[K0

0 ,K
0
±1] = ±K0

±1

[T0,K
0
±1] = 0 [T0,K

0
0 ] = 0

(77)

where the generators are defined in (59).
The operator T0 (54) commutes with the generators of su0

q(2) (77) and acts as a first-
order invariant of u0

q(2) = su0
q(2) ⊕ u0

T0
(1). The operators {K0

k }, k = 0,±1 couple
q-deformed particles of two different kinds. The second-order Casimir operator of the
subgroup SU 0

q (2) is given by

C2(SU
0
q (2)) = 2�j

2
(K0

+1K
0
−1 +K0

−1K
0
+1 + [ωK0

0 ][K0
0 + 1]ω + [ωK0

0 ][K0
0 − 1]ω)

= 2�j(K
0
−1K

0
+1 + [ωK0

0 ][K0
0 + 1]ω) (78)

which coincides with the classical invariant (15) in the limit q → 1.
(3) The two mutually complementary subalgebras su+

q(2) and su−
q (2) of the algebra spq(4)

are given by the q-deformed operators (63) and the non-deformed Cartan operators (64).
They have the following commutation relations:

[F±
+1,G

±
−1] = ρ±[4ωE±

0 ]

[E±
0 , F

±
+1] = F±

+1 [E±
0 ,G

±
−1] = −G±

−1

(79)

with ρ± = q±1+q
± 1

2�j

2 . It is again true that each of the generators {F +
+1,G

+
−1, E

+
0 } of

SU+
q (2) commutes with all the generators of the other SU−

q (2) subgroup {F−
+1,G

−
−1, E

−
0 }.

The first-order invariants N∓1 of u±
q (2) give the extension of su±

q (2) to the subgroup
u±
q (2) = su±

q (2)⊕ u∓(1). The operator F±
+1 (G

±
−1) creates (destroys) a q-deformed pair

of particles of the same kind. The Casimir invariant of the subgroup SU±
q (2) is

C2(SU
±
q (2)) = �j

2
(F±

+1G
±
−1 +G±

−1F
±
+1 + ρ±[2ωE±

0 ][E±
0 + 1]2ω

+ρ±[2ωE±
0 ][E±

0 − 1]2ω)

= �j(G
±
−1F

±
+1 + ρ±[2ωE±

0 ][E±
0 + 1]2ω). (80)

The useful identity (76) now has the form

[2ωE±
0 ][E±

0 + 1]2ω − [2ωE±
0 ][E±

0 − 1]2ω = [4ωE±
0 ]. (81)

The Casimir operator coincides with the classical one (18) in the limit q → 1.
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The q-deformed symplectic algebra reverts back to the classical limit for the rest of the
commutation relations between its generators (53),

[F †
l , Gk]2(k−l) = ϕl,k

2
√
�j

Tl+kq
(l−k)ωNl−k l + k 	= 0

[Tl, F
†
k ]k−l = χl,k√

�j

F
†
l+kq

−lωN−l l 	= 0

[Tl,Gk]k−l = − φl,k√
�j

Gl+kq
lωNl l 	= 0

[T0, F
†
k ] = kF

†
k [T0,Gk] = kGk

(82)

where the constants are defined as follows:

ϕ±1,0 = 2q∓2ρ± ϕ0,±1 = 2q
±(2+ 1

2�j
)
ρ∓ ϕ±1,±1 = 0

χ1,−1 = ρ− χ−1,1 = ρ+ χ±1,0 = 1 χ±1,±1 = 0
φ1,−1 = q−1ρ− φ−1,1 = qρ+ φ±1,0 = q∓1 φ±1,±1 = 0.

(83)

Another set of the same commutation relations can be obtained, which is symmetric with
respect to the exchange q ↔ q−1:

[F †
l , Gk] = 1

2
√
�j

1

[2]
Tl+k3lk(Nl−k) l + k 	= 0

[Tl, F
†
k ] = 1

2
√
�j

1

[2]
F

†
l+k3l0(Nk) l, k 	= 0

[Tl,Gk] = − 1

2
√
�j

1

[2]
Gl+k30k(N−k) l, k 	= 0

[Tl, F
†
0 ] [2]

2
= 1

2
√
�j

F
†
l (q

ωN−l + q−ωN−l ) l 	= 0

[Tl,G0] [2]
2

= − 1

2
√
�j

Gl(q
ωNl + q−ωNl ) l 	= 0

(84)

where the functions 3lk(Np) are defined in the following way:

3lk(Np) =
{
qωNp + q−ωNp + qω(Np+1)−1 + q−ω(Np+1)+1 k = 0
qωNp−1 + q−ωNp+1 + qω(Np−1) + q−ω(Np−1) l = 0.

(85)

The realization of spq(4) introduced here is consistent with the algebra of the Chevalley
generators ofUq(SO(5)), which is given in [13]. The comparison of the commutation relations
yields for the first triplet of the generators corresponding to the long root 1

SUτ
q (2) : (e1, f1, h1) ↔ (T+, T−, ωT0) (86)

and for the short root 2

SU−
q (2) : (e2, f2, h2) ↔

(
F−

+1√
[2]
,
G−

−1√
[2]
, ωE−

0

)
. (87)

The renormalization of the generators of the second triplet is introduced so that (79) can be
written in the standard suq(2) form:[

F±
+1√
[2]
,
G±

−1√
[2]

]
= ρ±

[4ωE±
0 ]

[2]
= ρ±[2ωE±

0 ]2. (88)

The rest of the commutation relations of both triplets are consistent within the parameter ω.
Comparing (82) with the other four generators, we obtain

(e+
3 , f

+
3 ) ↔ (F0q

−ωN−1 ,G0q
−ωN−1) (89)
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and

(e+
4 , f

+
4 ) ↔ (F +

+1q
−ωN−1 ,G+

−1q
−ωN−1) (90)

which are determined up to an overall multiplicative constant factor. The results prove the
isomorphism of the q-fermion realization of spq(4) and all possible representations of its
standard SUq(2) subgroup to the triplets of the Chevalley generators associated with the shorter
and longer roots of Uq(SO(5)).

3.3. Action space of the fermion realization of spq(4)

In general, the q-deformed fermion operators (70) act as in the classical case in a finite
metric space Ej for each particular j -level, with a vacuum |0〉 defined by αm,σ |0〉 = 0.
The scalar product in Ej is chosen in such a way that α†

m,σ is a Hermitian conjugate to
αm,σ : (α†

m,σ )
∗ = αm,σ , and 〈0|0〉 = 1. In general the q-deformed states are different

from the classical ones, but reduce to the classical ones in the limit q → 1.
The q-deformed creation (annihilation) operators F †

k , k = 0,±1 (53) are components of
a tensor of rank 1 with respect to the subgroup SUT

q (2) (84). These operators create a pair of
q-fermions coupled to a total angular momentum J = 0 and a total isospin T = 1. Analogous
to the classical limit, a set of vectors that span each space E+

j in the q-deformed case can be
chosen to be of the form

|n1, n0, n−1)q = (F
†
1)
n1(F

†
0)
n0(F

†
−1)

n−1 |0〉. (91)

The basis is obtained by orthonormalization of (91). The index q will be dropped from the
notation for the basis states in the following cases, which treat only the deformed space.

As in the classical case,�j labels the representation for each particular j -shell. The basis
states are uniquely specified by the classification schemes which use the suq(2) subalgebras
and the relevant Cartan generators. In the q-deformed case the Cartan generators of Spq(4)
can be chosen to be the nondeformed operators N±1 or their equivalent set of operators N and
T0 ≡ τ0 (54). The eigenvalues of these operators that label the basis states coincide with the
ones in the classical case and the example of table 1 can still be used. The quantum numbers
provided by the eigenvalues of the q-deformed Casimir invariants have to be taken in the limit
q → 1.

We briefly list the reduction chains and compare them with their classical counterparts in
order to emphasize the similarity and differences between them. The basis states together
with the second-order Casimir operators and their eigenvalues are often used in physical
applications. It is in this sense that their q-deformation may lead to some interesting new
results.

(1) In the limit q → 1, the second-order Casimir operator, T 2, of the SUT
q (2) subgroup has

the eigenvalues

T 2|n, T , i〉q →
q→1

T (T + 1)|n, T , i〉 (92)

where T = ñ
2 , ñ

2 − 2, . . . , 1 (odd) or 0 (even), where ñ = min
{
n, 4�j − n

}
and

i = −T ,−T + 1, . . . , T . In the deformed case the eigenvalues of T 2 for the lowest-
and the highest-weight states (75) are

T 2|n, T ,±T 〉q = 2�j

[
1

2�j

]
[T ]ω[T + 1]ω|n, T ,±T 〉q . (93)
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(2) The reduction chain Spq(4) ⊃ SU 0
q(2) ⊗ Uq(1)T0

describes pairing between fermions
of different types and introduces the seniority quantum number 2(n1 + n−1)max in the
labelling scheme for the basis states, |i, 2(n1 +n−1)max, n). The eigenvalue of the second-
order Casimir operator for this q-deformed subalgebra is given by

C2(SU
0
q (2))|n1, n0, n−1) = 2�j

[
1

2�j

] [
2�j−2(n1 + n−1)max

2

]
ω

×
[(

2�j−2(n1 + n−1)max

2
+ 1

)]
ω

|n1, n0, n−1). (94)

Here again, the generators of the subalgebra su0
q(2) act along the columns:

K0
+1|n1, n0, n−1) = |n1, n0 + 1, n−1)

K0
−1|n1, n0, n−1) = [n0] 1

2�j

[
1 − 2(n−1 + n1) + n0 − 1

2�j

]
|n1, n0 − 1, n−1)

N |n1, n0, n−1) = 2(n−1 + n1 + n0)|n1, n0, n−1).

(95)

The normalized basis states,

|n1, n0, n−1〉 = 1

M0(n1, n0, n−1)
|n1, n0, n−1) (96)

can be derived from (95). For the three types of state in this reduction, the normalization
coefficients are

Q2
0(n1, n0, n−1) = [n0]ω!

n0−1∏
k=0

[
1 − 2(n−1 + n1) + k

2�j

]
M0(0, n0, 0) = Q0(0, n0, 0)

M0(n1, n0, 0) = Q0(n1, n0, 0)M(n1)

M0(0, n0, n−1) = Q0(0, n0, n−1)M(n−1)

(97)

where the q-deformed factorial is defined by [A]k! = [A]k[A − 1]k . . . 1. The
normalization coefficients M(n±1) of the lowest-weight state (n0 = 0 and n∓1 = 0)
in each representation are derived by means of the generators of the next reduction.

(3) The other reduction Spq(4) ⊃ Uq(2)N∓ ⊃ SU±
q (2) ⊃ Uq(1)N± introduces deformation

in the model of coupled fermions of the same kind. Here the labelling is |n∓1, n0 =
n0 max, n±1), where n0 max = {0 or 1} is the seniority quantum number. The action of the
Casimir operator on the states is given by

C2(SU
±
q (2))|n1, n0, n−1) = ρ± �j

[
1

�j

] [
�j−n0 max

2

]
2ω

×
[
�j−n0 max

2
+1

]
2ω

|n1, n0, n−1). (98)

In the deformed case the action of the Casimir invariant of SU+
q (2) differs from that of the

Casimir invariant of SU−
q (2) by the factor ρ+/ρ−. The generators of su±

q (2) transform
the states along the diagonals as

F±
+1|n1, n0, n−1) = |n±1 + 1, n0, n∓1)

G±
−1|n1, n0, n−1) = ρ±[n±1] 1

�j

[
1 − n±1 + n0 − 1

�j

]
|n±1 − 1, n0, n∓1)

N±|n1, n0, n−1) = (2n±1 + n0)|n1, n0, n−1).

(99)
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The normalized basis states,

|n1, n0, n−1〉 = 1

M±(n1, n0, n−1)
|n1, n0, n−1) (100)

can be derived from (99). For the two types of state n0 = {0 or 1} in this reduction, the
normalization coefficients are

M2
±(n1, n0, n−1) = ρ+ρ− [n1]2ω![n−1]2ω!

n1−1∏
l=0

[
1 − n0 + l

�j

] n−1−1∏
l=0

[
1 − n0 + l

�j

]
(101)

where for n0 = 0 and n∓1 = 0 it follows that

M2(n±1) = ρ±[n±1]2ω!
n±1−1∏
l=0

(
1 − l

�j

)
. (102)

It is important to emphasize that this deformation may lead to basis states whose content is
very different from the classical case since there is no known simple function that transforms
the classical fermion operators c†

m,σ and cm,σ into the q-deformed ones α†
m,σ and αm,σ . A

smooth function may not exist when the anticommutation relations (73) hold simultaneously
with both signs for one and the same σ , as they are defined in (70).

The deformed basis states are labelled by the classical eigenvalues of the invariant operators
of the reduction along each of the cases considered. The matrix elements, particularly of the
raising and lowering generators of spq(4) and the second-order invariants, are also deformed,
which leads to different results in physical applications. After obtaining the correspondence
between the q-fermion realization of spq(4) and the Chevalley generators of Uq(SO(5)) we
can compare the two bases for an irreducible representation �j = 1

4nmax, which corresponds
to the representation (n1, n2) at n1 = n2 = 1

4nmax [13]. In the classical and in the q-deformed
cases, the first basis considered in [13] is related to the basis states (24) and (91).

4. Conclusion

In this paper we consider a fermion realization of the sp(4) algebra and its deformations. The
original algebra, as well as some of its deformed realizations, act in the same finite space Ej .
The finiteness of the representations is due to the Pauli principle.

The deformed realization of spq(4) is based on the standard q-deformation of the two-
component Clifford algebra [14], realized in terms of creation and annihilation fermion
operators. For the sp(4) case eight of the ten generators are deformed, the fermion number
operators N1 and N−1 and their linear combinations being the exceptions. The deformed
generators of Spq(4) close different realizations of the compact uq(2) subalgebra. The induced
representations of each uq(2) are reducible in the space E+

j and decompose into irreducible
representations. In this way we obtain a full description of the IURs of Uq(2) of four different
realizations of uq(2): uτq(2), u

0
q(2) and u±

q (2).
Each reduction into compact subalgebras of sp(4) and its deformations affords the

possibility of a description of a different physical model with different dynamical symmetries.
While within a particular deformation scheme the basis states may either be deformed or not,
the generators are always deformed as is their action on basis states. With a view towards
applications, the additional parameter of the deformation gives a richer variety of operators
associated with observables, nondeformed as well as deformed. In a Hamiltonian theory
this implies a dependence of the matrix elements on the deformation parameter, leading to
the possibility of greater flexibility and richer structures within the framework of algebraic
descriptions.
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